Universitatea

Politehnica
Timisoara

UNIVERZITET
METROPOLITAN
BEOGRAD

Up

Erasmus+ Programme *
of the European Union EA

Co-funded by the Rt

* 4

TOPIC PLAN
Partne.r . Belgrade Metropolitan University
organization
Topic Analysis of Complexity of algorithms
Lesson title Big-O notation
Learning
objectives Student can interpret Big-O notation. Strategies/Activities
Student can calculate complexity of an algorithm. OGraphic Organizer
Student can compare two or more algorithms by their | Think/Pair/Share
complexity. @Modeling
MCollaborative
Aim of th The aim of this lecture is to | how t lcu-lat earning
im of the e aim of this lecture is to learn how to calcu-late : : :
VIDiscussion questions
lecture / the complexity of an algorithm. Using th notion of seussion quest

Description of
the practical
problem

functional limit, the notion of Big-O will be introduced.
Practical problem: When studying the complexity of
an algorithm, we are concerned with the growth in
the number of operations required by the algorithm
as the size of the problem increases. In order to get a
handle on its complexity, we first look for a function
that gives the number of operations in terms of the
size of the problem, usually measured by a positive
integer n, to which the algorithm is applied. We then
try to compare values of this function, for large n, to
the values of some known function, such as a power
function, exponential function, or logarithm function.
Thus, the growth of functions refers to the relative
size of the values of two functions for large values of
the independent variable.

CProject based
learning
MProblem based
learning

Assessment for
learning
MObservations
MIConversations
MWork sample
COConference
OCheck list
ODiagnostics

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

Universitatea
Politehnica
Timisoara

v v

UNIVERZITET i
METROPOLITAN [
BEOGRAD A

Previous
knowledge
assumed:

functional limits

Introduction /
Theoretical
basics

Functional limits

Definition 1. The limit of function f:[b,c] - R as x
goes to a € [b, c] equals L if and only if for every € >
0 there exists some § > 0 such that whenever x(#
a) is within § of a, then f(x) is within € of L.

If a is a limit point of the domain of f, then,
intuitively, the statement

lim f(x) = L

is intended to convey that values of f(x) get
arbitrarily close to L as x is chosen closer and closer
to a. The issue of what happens when x = a is
irrelevant from the point of view of functional limits.
In fact, a need not even be in the domain of f.

The above definition is so called § — ¢ definition.
Actually, if we choose output tolerance € > 0, than
must be some input tolerance § > 0 so that any
input within § of a has an output within £ of L (see
Figure 1).

Co-funded by the

Assessment as
learning

VISelf-assessment
OPeer-assessment
CPresentation
OGraphic Organizer
COHomework

Assessment of
learning

VITest

MQuiz
COPresentation
OProject
COPublished work

* Xk

Erasmus+ Programme *
of the European Union

* gk

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

* 4

SR (- Universitatea
' i Politehnica

METROPOLITAN [\ imi
BEOGRAD !
\ Timisoara

Co-funded by the

Erasmus+ Programme
of the European Union

*
*

* Xk
*

*
* 4k

LIM§09=L

X—rd

v

a—Sl LWS

Figure 1.

I"

The “critical” part of above definition is that as you
change & you need to be update § (see Figure 2). If
you make ¢ smaller still and decrease your level of
acceptable error of the output, you need to find
some amount of acceptable error on the input. And
this has to continue for every possible non-zero value
of ¢.

LTS

L&

Figure 2.

This view of the definition is extendable in other
context. Consider the limit as x goes to infinity of
f(x). What does it mean if that limit is equal to L?
For given output tolerance &, there must be some
tolerance on the input that guarantees striking within
e of L. In this case there is some bound M € R, so
that whenever your input is greater than M, then
your output is within € of L. As before, this must be
true no meter what € you choose. Furthermore, If

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

PR ==\ Universitatea
PR) Polehnica
iy \. ./ Timisoara

Co-funded by the

Erasmus+ Programme
of the European Union

*
*

* Xk
*

*
* gk

you & smaller and smaller, then M will be larger and
larger.

If the limits as x goes to infinity of f(x) exists (see
Figure 3), we use next denotation

,li_r&f(x) = L.

LIMITS ¢
e |
r/ N
L N
] wmsw-L
T g
Figure 3.

Analogous holds for limit as x goes to —oo of f(x).

Action

Discussion with students about orders of growth.
Actually, we will talk about what happens when
function gets very, very large, i.e. how quickly goes to
infinity.
Definition 1. Let functions f and g
defined in the neighborhood of the point a, satisfy
that

lim f(x) =lim g(x) = oo.

xX—a xX—a

1) Functions f and g are of the same order,
when x goes to q, if and only if holds

|f ()]
lim =k, (k# o,k #0).
Latgeor ¢)
2) Function f has a higher order than function g,

when x goes to q, if and only if holds
@)l
lim = 00
x=a|g(x)]
3) Function f has a lower order than function g,
when x goes to a, if and only if holds

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

S __ Co-funded by the RAH
Jvy, (S Universitatea Erasmus+ Programme [

;?ﬂ,{:gﬂﬂ}%ﬂ of the European Union * ok

UNIVERZITE i
METROPOLITAN [N
BEOGRAD R

)

lim =0

x=a|g(x)|
Remark. In terms of introducing a definition for a Big-
O notation for using it for analysis of complexity of
algorithms we will be particularly interested in the
case when a = o in Definition 4.

In this way, we can obtain the next scale of growth

w<Inx<-<Yr<Vx<x<x?<x3<..<2%
<e¥<3*<4¥ <.

when x goes to 0. This scale are infinite and dense.

Quantifying this rates of changes, will give us a new

language - Big-O notation (or asymptotic notation).

Definition 2. Given a functiong: R - R

{0 o SOOI
0(g) = {f(x).Oxll)r?o 9] < }
f € 0(g) means that f is equal or less order than g.

According to Definition 1, if lim Y@l _ o is
x—o0 |g(x)|

satisfied, then f & 0(g).

Alternately, we can define big-O as follows.

Definition 3. Let f,g: R —» R. We say that f is 0(g)

if and only if there are constants ¢, N € R" such that

lf(x)] < c-|gx)]|, forx > N holds.

Some important properties of Big-O are

1. f € 0(f) (reflexivity of big-0),

2. If feO(g) and ce R\ {0}, then c-f €
0(9),

3. If fEO(g) and g € O(h), then f € O(h)
(transitivity of big-0),

4. If feOo(h) and g€ O(h), then f+gE€
o(h),

5. 0(f + g) = max{0(f),0(g)},

6. 0(f-g)=0(f) 0(9).

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

. Co-funded by the x
”u Universitatea Erasmus+ Programme *

Politehnica
Timisoara

of the European Union '’

Complexity of an algorithm

When you are analyzing an algorithm or code for its
computational complexity using Big-O notation, you
can ignore the primitive operations that would
contribute less-important factors to the run-time.
Also, you always take the worst case behavior for Big-
0.

Here is a list of classes of functions that are
commonly encountered when analyzing algorithms.
The slower growing functions are listed first.

Notation Name ‘
0(1) constant
O(logn) logarithmic
o(n) linear
O(nlogn) nlogn
o(n?) quadratic
o(n") Polynomial (r > 1, other
than n?)
o™ Exponential (r > 1)

The running time of iterative algorithms is
straightforward to compute. Let f;(n) be the time it
takes one iteration of the algorithm to run, and let
f2(n) be the number of iterations. Then the running
time of the algorithm is O(f;(n) - f,(n)).

Example 1.
1.
int increment(int n) {
returnn+1;
}
This function has one subexpression that takes
constant time to execute and executes only once. So

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

. Co-funded by the x
Universitatea Erasmus+ Programme S

m:ggg;ga of the European Union '’

it runsin 0(1).

2.
int factorial(int n) {
for (inti=n;i>0;i++){

n *=i;

}

return n;
}

This function has a subexpression n *= i that takes
constant time to execute, and this subexpression is
executed n times. So f;(n) =1, f,(n) =n, and the
function runs in O(n) time.

3.

int foo(int n) {

int x;

for (inti=0;i<n;i++){

X +=1i;

}

for (inti=1;i<n/2;i++){

X *=1i;

}

return x;

}
In this case, there are two loops. The first runs in
0(n), and the second in O (2) = 0(n), so the total

running time is in O(n).

4,
int bar(int n) {
int x;
for (inti=0;i<n;i++){
for (intj=i;j<n;j++) {
Xx+=1;

}

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

Co-funded by the Rl

Universitatea Erasmus+ Programme |4

v v

;?ﬂ,{:gﬂﬂ}%ﬂ of the European Union * ok

UNIVERZITET i
METROPOLITAN [
BEOGRAD A

* 4

return x;

}
This function has one subexpression, the inner loop,
that executes n times. What is the running time of
the subexpression? The subexpression has one
subexpression of its own that executes n —i times
and is constant. So the running time of the inner loop
is in O(n—1i). Now the problem with determining
the running time of the function is that i varies. But
we can make estimates, as long as the estimates are
greater than the actual value, so let's assume that the
running time of the inner loop is n. Now the inner
loop executes n times, so the total running time is in
0(n?).

5.

int baz(int k, int n) {

intres=0;

for (inti=0;i<k;i++){

res += (k- i) * k;
}
for (inti=0;i<n;i++) {
res-=(n-i) *i;

}

return res;

}
This functions has two loops, the first of which is in
0 (k) and the second of which isin 0(n). We
don't know which of the two loops is faster, since it
depends on the relative sizes of k and n, so we can
only say that the function runs in O(k + n). It is also
possible to say that the function runs in
O(max(k,n)) since we can give an upper bound on
the faster loop by assuming it runs in the same
amount of time as the slower loop. Note that in
general, it is not possible to give the running time of a
multiple input function in terms of only one of its
inputs.

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

Co-funded by the i

Eg;'ﬁ{fni'lraéﬁﬂ Erasmus+ Programme { »
TR of the European Union Htd

Timigoara

int foobar(int k, int n) {
intres =0;
for (inti=0;i<k;i++){
for (intj=0;j<n;j++) {
res+=(k-i) *j;

}
}
return res;
}

The inner loop runs in O(n) time, and the outer loop
iterates k times, so the running time of this function
isin0(k-n).

Recursive algorithms are somewhat harder to analyze
than iterative algorithms. They usually require
inductive analysis. We start at the base case and
work our way up higher inputs until we see a pattern.
One way that helps is to draw a tree of the recursive
calls, with each call as a node and an edge between
the caller and the callee. We then count how many
nodes are in the tree as a function of the input. Then
the running time of the algorithm is the number of
nodes in the tree times the amount of time each call
takes (not including the recursive calls each each call
makes).

Example 2.

int factorial2(int n) {

if (n==0) {

return 1;

}else {

return n * factorial2(n - 1);
}

}

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

. Co-funded by the RAH
Universitatea Erasmus+ Programme [
of the European Union i

Politehnica
Timisoara

We draw a tree of the recursive calls in Figure 5.
About n recursive calls are made, and each call takes
constant time, so the running time of factorial() is in
o(n).

f4)
3)N

f(2)

f(

Y

f(0)

Figure 5. Tree of recursive calls for factorial(4).

int fibonacci(int n) {

if(n==0]| n==1){

return 1;

} else {

return fibonacci(n - 1) + fibonacci(n - 2);
}

}

Again we draw a tree of the recursive calls in Figure
6. The tree is a nearly complete binary tree, so it has
about 2n nodes in it. So the running time of this
function isin 0(2™).

"The European Commission's support for the production of this publication does not constitute an endorsement of the

contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

10

. Co-funded by the r
Universitatea Erasmus+ Programme *

;?ﬂ,{:gﬂﬂ}%ﬂ of the European Union * ok

* 4

f5)

f4) * RG]

3 f(2) @))

K < v 4 ¥]

f@ fa)(f £(0) 7o) £(0)

L4)

f(1) £(0)
Figure 6. Tree of recursive calls for fibonacci(5).

Finally, at the end of the lesson we will mention other
types of notations that are used in computer science
to describe the performance or complexity of an
algorithm. We will define the Big-Q and the Big-©

notations.
Materials / The materials for learning are given as a part of
equipment / references of the end from this topic plan;
digital tools / Equipment:. classroom, board, chalk;
software Digital tools: laptop, projector;
Consolidation e The teacher's discussion with the students through appropriate
questions;

¢ Independent solving of simple tasks by the students under the
supervision of the teacher;

¢ Given of examples by the teacher for introducing a new concept in a
cooperation and a discussion with the students;

e Assignment of homework by the teacher with a time limit until the next
class.

Reflections and next steps

Activities that worked Parts to be revisited

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which

may be made of the information contained therein."
11

. Co-funded by the x
”u Universitatea Erasmus+ Programme S

Politehnica
Timisoara

of the European Union '’

After the class, the teacher according to his | Through the success of the homework done
personal perceptions regarding the success of the | by the students, questions and discussion at
class fills in this part. the beginning of the next class, the teacher
comes to the conclusion which parts of this
class should be revised.

References

1. Dr Rale Nikoli¢, Elektronski materijali predavanja za ucenje, Metropolitan Univerzitet, 2020. godina,
Beograd

2. https://web.mit.edu/16.070/www/lecture/big_o.pdf

http://faculty.salisbury.edu/~ealu/COSC320/Lectures/complexity.pdf

4. https://web.stanford.edu/class/archive/cs/cs106b/cs106b.1172/lectures/11-BigO/11-BigO.pdf

w

"The European Commission's support for the production of this publication does not constitute an endorsement of the
contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which
may be made of the information contained therein."

12

